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The behaviour of the Kikuchi lines parallel to the shadow edge, which are formed under diffraction 
conditions in the Bragg case, is experimentally studied for zincblende (ZnS), MgO and rock salt. A line 
of this group generally has an asymmetric intensity profile across it. Sometimes it shows contrast reversal 
from an excess appearance in the central range to a defect appearance in the side ranges along the line. 
These peculiarities become noticeable with the increase in the glancing angle of the incident beam with 
the crystal surface. It is pointed out that theoretically the form of the line term in the intensity formula 
for Kikuchi patterns in the Bragg case differs from that in the Laue case. The variation of the line 
profile, including the effect of contrast reversal, takes place by the change in the intensity formula, in 
the ratio of the band term to the line term, depending on the scattering vector appropriate to the in- 
elastic electron scattering involved. By assuming approximate forms for the scattering factors for 
Kikuchi patterns, the observed results are qualitatively explained. 

1. Introduction 

The contrast reversal of Kikuchi bands is a character- 
istic phenomenon in high-energy electron diffraction 
(HEED), which takes place depending on the scat- 
tering angle, the glancing angle (in reflexion experi- 
ments), the crystal thickness (in transmission experi- 
ments), and the electron energy (Shinohara & Matsu- 
kawa, 1933; Pfister, 1953; Alam, Blackman & Pashley, 
1954). This phenomenon has also been dealt with in a 
number of recent experimental and theoretical in- 
vestigations (Ishida, 1970, 1971; Nakai, 1970; Oka- 
moto, Ichinokawa & Ohtsuki, 1971; Chukhovskii, 
Alexanjan & Pinsker, 1973; Arii, 1973). 

So far, however, observations of a similar effect in 
Kikuchi lines seem to be few. In addition, the theo- 
retical studies given in the past are mostly for Kikuchi 
patterns in the Laue case, while those for Kikuchi 
patterns in the Bragg case can be found only in a 
short discussion given by Takagi (1958) and a recent 
treatment by Kawamura, Ichikawa & Goldsztaub 
(1973). 

In the above, the separation of the diffraction condi- 
tions into the Laue case and the Bragg case is given for 
the inelastically scattered electrons contributing to 
Kikuchi patterns, in terms of the two-wave approxima- 
tion (Fig. 1). Kikuchi lines found in a transmission 
pattern from a thin crystal specimen are exclusively 
those in the Laue case, while those in the Bragg case 
may appear in a reflexion pattern (RHEED pattern) 

* Home address: 2-29-1 Minami-Ogikubo, Suginami-ku, 
Tokyo 167, Japan. 

obtained from a cleavage face of a crystal. Particular- 
ly, the Kikuchi lines parallel to the shadow edge, which 
are caused by the lattice plane parallel to the crystal 
surface, are obviously in the Bragg case over their whole 
line length. Hereafter, these Kikuchi lines are called 
the 'H. K. lines', as an abbreviation for 'horizontal 
Kikuchi lines'. 

In many cases the H.K. lines appear to be similar to 
ordinary Kikuchi lines [e.g., Fig. 5(a)]. In their experi- 
mental observations, however, the present authors 
noticed that, as a characteristic phenomenon, the H.K. 
line occasionally shows contrast reversal, from an 
excess appearance in the central range to a defect 
appearance in the side ranges along the line length.* In 
addition, it was found that each H.K. line generally 
has an asymmetric intensity profile more or less across 
it. As these features are thought to be due to the 
peculiarity of Kikuchi lines in the Bragg case, the 
behaviour of the H.K. lines has been investigated ex- 
perimentally as well as theoretically in more detail in 
the present paper. 

2. Experimental 

The observations of RHEED patterns were performed 
on cleavage faces of zincblende (ZnS), magnesium 
oxide (MgO) and rock salt (NaCI), with the electrons 

* It appears that Professor K. Shinohara had already 
noticed this effect in the course of his pioneering work on 
Kikuchi patterns in the early 1930's (private communication 
through Professor K. Kohra). One of the present authors 
(S.M.) independently became aware of this effect some years 
later. 
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Fig. 2. R H E E D  pattern (100 keV) from tile (001) surface of MgO for an azimuth deviated about  10 from [110]. 
~¢ (glancing angle)= 2.7 °. 
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Fig. 3. Magnification of a part of Fig. 2. Contrast  reversal can be observed for the 004, 006 and 008 Kikuchi lines. 
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Fig. 5. Series of RHEED patterns (100 keY) from MgO for an azimuth deviated about 10 ° from [110]. (a), (b), (c), (d) and (e) 
correspond to ~ =  1.7, 3.2, 3-7, 4.2 and 4"7 ° respectively. The arrows indicate each position of the 006 H.K.  line. 
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of 100 keV used throughout. It is generally inevitable 
that the H.K. lines interfere with many Kikuchi lines 
and bands which cross them, sometimes severely for 
certain crystal azimuths. Therefore, favourable azi- 
muths were selected so that the H.K. lines could be 
observed without serious interference. 

The intensity profile across an H.K. line was meas- 
ured by photometry on the diffraction photograph; 
the light spot used was of a size 30 x 300/tm with the 
longer side set parallel to the line. The photometer 
curve for a RHEED pattern generally has a steep 
gradient down towards the shadow edge, and this 

/ / / / , , / , . / /  / , , / i / / , ,  / / /  / / / / /  / / / / / / /  

(a) Bragg case (b) Laue case 
Fig. 1. Directions of the wave vectors k; and k~ relative to the 

crystal surface, for  the plane-wave componen t s  of  a two- 
te rm Bloch funct ion  represent ing an inelastically scattered 
electron state in the crystal. 
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Fig. 4. Pho tomete r  curves of  the intensity profiles on an ar- 
bi t rary scale of  the 004 (A) and 006 (B) H.K.  lines in the 
pat tern  f rom MgO shown in Figs. 2-3 along the coord ina te  
a which is perpendicular  to the lines and increases with the 
scattering angle. (a), (b), (e), (d) and (e) cor respond  to the 
azimuthal  positions concerned  as indicated by the arrows 
in Fig. 1. x '=x /L ,  x, the distance along the H.K.  line f rom 
its central  position, L, the camera  length. 

makes it rather difficult to separate the genuine profile 
of the line from the background without ambiguity. In 
this study, the background in the limited range beneath 
the H.K. line concerned was approximated either by a 
straight line or by a spherical arc, such that the subtrac- 
tion procedure will give an H.K. line profile with 
reasonable levels and forms at the two tail ends. 

3. Contrast reversal and asymmetric profiles of 
H.K. lines 

Fig. 2 shows a reflexion pattern from the cleavage face 
(001) of a MgO crystal, for an azimuth deviating about 
10 ° from [110] and for glancing angle ~=2.7 °. Fig. 3 is 
a magnification of a part of Fig. 2. In these figures the 
contrast reversal is clearly seen for the H.K. lines 004, 
006, and 008. 

Fig. 4 shows the intensity profiles of the H.K. lines 
004 and 006 obtained for the azimuthal positions indi- 
cated in Fig. 2. The ordinates of the figures stand for 
the intensity, with floating origins, on a scale which 
is arbitrary but common for all the profiles. The 
abscissae correspond to the coordinate a with respect 
to an axis perpendicular to the H.K. lines towards 
higher scattering angles (i.e. in the upward direction 
across the line); the lateral positions of the profiles 
have been relatively adjusted to one another as reason- 
ably as possible by visual inspection of the photo- 
graphs. Fig. 4 clearly shows that an H.K. line generally 
has an asymmetric intensity profile. It should be noted 
that even a seemingly normal excess contrast in an 
H.K. line in its central range already bears some 
asymmetric feature, as seen in Fig. 4A(a) and B(b). The 
features of the H.K. lines from MgO as shown in Figs. 
2-4 were similarly observed in RHEED patterns from 
the (011) face of zincblende and the (001) face of rock 
salt. They can be summarized as follows: 

The asymmetric intensity profile of an H.K. line 
consists of a combination of two parts, one the excess 
part located on the downside (with a lower value of a), 
and the other the defect part on the upside (with a 
higher value of a). With increase in the distance x along 
the line from its central position, the excess part gradu- 
ally diminishes both in peak height and width, while 
the defect part increases both in defect depth and 
width. The contrast reversal along an H.K. line is a 
result of such a variation in the asymmetric profile with 
x. In this variation the difference between ae, the coor- 
dinate corresponding to the excess intensity maximum, 
and tTd, that corresponding to the defect minimum, 
does not substantially change. Therefore, when an 
H.K. line with excess contrast in its central range 
changes to one with defect contrast in the side ranges, 
the latter is geometrically not in line with the former, 
but a finite step corresponding to a a - a e  exists be- 
tween them, as can be clearly seen in Fig. 3. 

Between the extreme ranges of the contrast along an 
H.K. line, there is a transitional region where the 
excess and defect parts coexist with equal weight, for 
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which the intensity profile assumes typically an asym- 
metric form as seen in Fig. 4A(c) and B(c). 

4. Dependence on the glancing angle 

When the glancing angle ~ is as small as 0.25,-,0.5 ° 
most of the H.K. lines are found to be rather weak. In 
general an H.K. line 00h has the strongest excess con- 
trast when the specular spot comes to lie on it to 
satisfy the Bragg condition 00h. The asymmetric fea- 
ture and the contrast reversal of the same H.K. line 
begin to become increasingly noticeable when the 
specular spot after having crossed this line deviates 
upwards by a further increase in e. 

Fig. 5 shows a series of RHEED photographs from a 
MgO crystal taken at a slightly different crystal 
azimuth from that for Fig. 2, for various values of cc In 
these figures, one may note that the contrast reversal 
of the H.K. lines takes place as if it advanced from 
lower-order lines to higher-order ones with the increase 
in e. For instance, the contrast reversal, which cannot 
be found in Fig. 5(a) for c~= 1.7 °, becomes evident in 
the lines 004, 006 and 008 in Fig. 5(b) for ct=3.2 °, 
and also in the line 0,0,10 in Fig. 5(c) for c~=3"7 °. As 
to 004, it is only in (a) that this line shows any ex- 
cess contrast in the central range. In (d) for c~=4"2 ° 
and (e) for c~=4.7 °, particularly in the latter, the 
excess part of the line 006 almost vanishes over its 
whole length. 

The trend mentioned above can be summarized in 
terms of the transitional boundary, which is a band (or 
curve) formed by connecting the transitional regions on 
each H.K. line. This boundary divides the diffraction 
pattern into the excess and the defect areas with respect 
to H.K. lines, as illustrated in Fig. 6. By inspecting Fig. 
5, it is known that the form and the location of the 
transitional boundary relative to the specular spot S are 
almost independent of c~ in the range of e from 3.20 to 
4-70 °. This implies that, as e increases, the transitional 
boundary moves upwards together with the specular 
spot S located at the scattering angle 2~,* with speed 
twice that of the shadow edge and of the Kikuchi pat- 
tern system. Thus, the contrast reversal advances from 
lower to higher-order H.K. lines, as these lines are 
successively included in the defect area outside the 
transitional boundary. This boundary can be approxi- 
mated over its greater part  by two straight bands 
forming an obtuse angle of about 120 °, as illustrated in 
Fig. 6. The transitional boundary for zincblende was 
found to be almost the same. 

The physical meaning of the transitional boundary 
may be understood as follows. Fig. 7 shows schematic- 
ally the cross section of the dispersion surface in the 
plane perpendicular to the crystal face (001) of an f.c.c. 
crystal; the small circles mark the vertex regions proper 
to the diffraction conditions on 004, 006, 008, etc. If 

* In Fig. 5 the specular spot is only seen in (a) and (b), 
because of the limited size of the photographic film. 

the initial state gtl, o (k0=AO), consisting of a single 
plane wave, undergoes an inelastic transition to an- 

other state ~Uk'0 (k'0 = BO = k0 + q, q = BA) relevant to a 
tie-point B lying in the region of one of the small 
circles, say that for 006, then the inelastic transition 
A - +  B contributes to formation of the Kikuchi line 
006. 

Now, we consider in Fig. 6 the mirror image of the 
pattern above the shadow edge; thus the q boundary 
is the mirror image of the transitional boundary, D is 
the direct spot due to the incident beam, and the lines 
00"4, 00-6, etc. correspond geometrically to those Kiku- 
chi lines which are not actually observable. It is obvious 
that the wave vectors k0, k'0 and koo 6 ( =  k '  o-k- boo6; boo6, 
the reciprocal vector for 006) in Fig. 7 correspond to 

the points D, E and F in Fig. 6, respectively, and DE 
corresponds to q. The q boundary, therefore, represents 
a boundary such that when the top of q is located in- 
side or outside this boundary, the inelastic scattering 
concerned gives an H.K. line with excess or defect 
contrast, respectively. This role of the q boundary fixed 
relative to the direct spot D is the same as that of the 
transitional boundary fixed relative to the specular 
reflexion S in the actual diffraction pattern. It should 
be noted that the location of the tie-point B and there- 
fore the vector q may become imaginary in the Bragg 
case under a certain condition, even without absorp- 
tion. 

S t - B \  
~I~ " ~i,,~ ~ 

"~ ~ 0 0 1 0  
- ~--~, ~ ~. ~ t ~  -~2- 008 
. . . .  _ ~ ' ~  ~.~g.~r___ oo6 
. . . . . . .  ~ ' ~ -  . . . .  ;"~>-'/I . . . .  0 0 4  s , o . o ,  e ~  

.......................... ~ ,  ......... ~ ' 7  .... I"~'66~"oo'" ~" .......... 
oo~ 

- D , r  q~ T 

q-B 

Fig. 6. A sketch of Fig. 2, illustrating the transitional boundary 
( t - B ) .  The part below the shadow edge is the mirror image 
of that above this line. D, the direct spot; S, the specular 
reflexion; q boundary ( q - B ) ,  the mirror image of the tran- 
sitional boundary. 

o.o, ~ ,,, ,~ o o o  

Fig. 7. Dispersion surface relevant to the generation of the 
H.K. lines, appropriate to the case of MgO. The tie point A 
corresponds to the initial state and B to the final state. 
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5. Theoretical  basis 

As is well known, an ordinary Kikuchi line in the Laue 
case also has an asymmetric character owing to the so- 
called band term (Kainuma, 1955; Takagi, 1958), but 
this term is known to become relatively less significant 
as the location of the line pair concerned deviates 
more from the direct spot corresponding to the inci- 
dent beam. The asymmetric feature of an H.K. line, on 
the other hand, becomes increasingly conspicuous 
under similar circumstances, which in this case are due 
to the increase in the glancing angle c~. This contrast 
indicates that the asymmetric profiles as well as the 
contrast reversal of the H.K. lines are of a nature 
peculiar to them.* In the previous paper, Kawamura 
et al. (1973) theoretically dealt with the Kikuchi 
patterns in the Bragg case on the basis of the two-wave 
approximation for a semi-infinite crystal involving 
absorption. Their theory is briefly outlined below. 

According to the formal theory of scattering 
(Messiah, 1965; Wu & Ohmura, 1962), the intensity 
J0 of the Kikuchi pattern is given, in the distorted-wave 
Born approximation, by 

J0d[2 oc - ~  ~ 1@~7 ), a, IH'l '''(+)wKo , a0)120(K') (1) 
n ~ 0  

where a, is the wave function of the nth excited state of 
the crystal, H '  represents the part of the Hamiltonian 
responsible for the inelastic scattering and Q(K') is the 
state density of the final states for a specified vector 
K'. (Refer also to Takagi (1958) and Okamoto et al. 
(1971).) We put [~u~+)) = exp (2zciK0r) corresponding to 
the incident wave exp (2rcik0r) at the crystal surface, 
which is assumed to be remote from any Bragg condi- 
tion, where IKol=lkol+meVo/h21kol, and V0 is the 
inner potential. If we are concerned with the inelasti- 
cally scattered wave emerging from the crystal surface 
with wave vector k', then the wave function of the 
final state in equation (1) is of the form 

<~'~:)1-- ~u~- >= ~-~,-- Z Ch exp ( -  2rciK~,r) (2) 
h 

which is the 'reciprocal wave' used successfully by 
Kainuma (1955) in his theory of Kikuchi patterns, 
where K' is a wave vector whose tangential component 
to the crystal surface is equal to that of k', K ~ = K - h  
and h is the reciprocal-lattice vector. 

In the two-wave approximation in the Bragg case 
for a semi-infinite crystal, only one tie-point is per- 
mitted on the dispersion surface (Takagi, 1958; Kohler, 

* The peculiarity of the H.K. lines has long been over- 
looked, probably because the angular range of the glancing 
angle a has been limited at a maximum of the order of only 
5 ° with the usual RHEED setting, owing to a limited size of 
photographic film, and also because a range 0c~ 1 ,-, 2 ° is used 
in most RHEED practice. As seen in Fig. 5 the peculiarity 
of the H.K. lines becomes noticeable only when ~ is larger 
than about 2 °. In fact, it is only on a wide fluorescent screen 
that one can observe the entire aspect of the defect H.K. lines 
extending over a considerable range in the pattern. 

1933), which gives the wave field accompanying the 
electron flow directed inwards with respect to the crys- 
tal surface. Assuming the symmetrical Bragg case, we 
have 

1 
C o = l ,  Ch=-- l+ i - -~(W+ig+[ /B) ,  (3) 

where ]/B = Re ]/B + i Im ]/B and 

1 
Re]/B= _+ ~ 2  [(W 2 - 1  _g2 + k 2) 

+ V ( w  2 -  l -g2-~-k2)2~4@W-k)Z] 1/2 ; (4) 

+ : g W - k > O  , - :gW-k<_O 

1 _gZ Iml/B= - ~ [ - ( W  2 -  1 +k  z) 

+ V'(W 2 - 1 - g  2 +k2) 2 + 4 ( g W - k ) 2 ]  1/2. 

W, the 'Selektionsfehler', is defined in such a way that 
it increases with the increase of the angle between k' 
and the crystal surface; g and k, the quantities respon- 
sible for the normal and abnormal absorption, respec- 
tively, are given by 

g=C~oo/IU~l and k=CgdlU~l, (5) 
where U[,, C0~0 are the potential terms [refer to Kawa- 
mura et al. (1973)]. The substitution of the wave func- 
tion into equation (1) gives the intensity of an H.K. 
line 

1 
J0~S(Q ,Q)  + - ~ - - ~  [(W+ Rel/B) 2 

+ (g + I m  I/B)2 ]S( Qh, Qh) 

2 
1 + k  2 [(W+ Re[ /B )+k (g+  Iml/B)]S(Q, Qh), 

(6) 

where Q = K ' - K 0  and Q h = Q - h ;  S(Q,Q), S(Qh, Q,,) 
and S(Q, Qh) are quantities corresponding to the 
structure factors for Kikuchi patterns (Kainuma, 
1955); Qn is essentially the same as the vector q in- 
troduced in § 4. 

6. Theoretical  results 

The first term of J0 in equation (6) corresponds to the 
background intensity. The second and third terms may 
be called the line and band terms, respectively, 
following the names of the corresponding terms in the 
Laue case. It should be noted that the line term in the 
Bragg case contains the factor S(Qh, Qh) only, instead 
of S(Qh, Q k ) -  S(Q, Q) in the Laue case. 

In the Laue case, because of its form proportional to 
S(Qh, Q h ) - S ( Q , Q ) ,  the line term vanishes at the 
symmetric condition fulfilling IQI = IQhl, and its value 
rapidly increases with the increase in the ratio IQ]/IQ~,l 
from unity. Therefore, the ratio of the line term to the 
band term, which is represented by 

A C 3 I A  - 3* 
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S(Q, Qh) 
bL= S(Qh, Qh) - S(Q, Q ) '  (7) 

varies over a wide range with Q and Qh. In the Bragg 
case, on the other hand, the change of the corre- 
sponding ratio, 

b e -  S(Q, Qh) 
S(Qh, Qh) ' (8) 

is not so conspicuous as in the Laue case. Nevertheless, 
the fine structure of the intensity profile given by J0 in 
equation (6) undergoes a significant variation de- 
pending on bB. 

The function S(Q, Qh) has been theoretically cal- 
culated for the core-electron excitation (Kainuma, 
1955; Okamoto et al., 1971) as well as for the phonon 
excitation (Takagi, 1958; Okamoto et al., 1971) for the 
transmission case. In the reflexion case for, e.g., the 
phonon excitation, S(Q, Qh) can approximately be 
given in the form 

1 1 1 
S(Q, Qh) °c QZ [ ~ fv*~(Q)- z ]  

/z Q~ v 
x [ ~fvv(Qh)-  Z ]  

v 

x {exp [ -  M(h)] -  exp [ -  M ( Q ) -  M(Q,)]} 

(9) 
where f~(Q) is the Compton scattering factor, Z the 
atomic number, exp [-M(h)] ,  'etc. are the Debye- 
Waller factors and p the absorption coefficient which 
is defined by 

/z= lU~l  ( g + I m  I /B)/K~, (10) 

where the term Im ]/B describes the anomalous absorp- 
tion for W< - 1  and the anomalous transmission for 
W> 1. Thus the part of J0 excluding the background 
term is given by 

and the core excitation, the behaviour of the H.K. lines 
with the change of be may be discussed on the basis of 
the form (9). If, for simplicity, the temperature depen- 
dence due to the Debye-Waller factors, and the Q and 
Qh dependence of the Compton scattering factors are 
neglected, be is approximately given by 

2 

On the basis o f  equation (12), be can be expressed in 
terms of x, or the distance along an H.K. line from its 
central position as defined in § 3, and the glancing 

J; 

1"o g=O'2 
, o ,  

0"5 
a 

-i w 

0"5 

-1"0 

Fig. 8. The intensity profiles J0 calculated from equation (11) 
for g=0.2 and k=0.1. Curves a, b, c and d correspond to 
bn=0.25, 0.50, 0.75 and 1.0 respectively. The ordinate, the 
intensity on an arbitrary scale, and the abscissa, W(Selek- 
tionfehler, which is linear in the coordinate o" across the 
H.K. lines). Each profile is normalized at W= -0.75. 

S;o  ( W + R e  V'B)Z+(g+Im l / B ) 2 - 2 b B [ ( W + R e l / B ) + k ( g + I m  i /B)]  
g + I m  I/B (11) 

Fig. 8 shows an example of the intensity profiles J0 
calculated from (11) for the values bB =0, 0.50, 0.75 and 
1"0, assuming the absorption parameters g=0 .2  and 
k=0.1 ;  the ordinate stands for the intensity on an 
arbitrary scale and the abscissa corresponds to W, 
which is linear in the coordinate cr defined in § 3 in the 
direction across the H.K. lines. Fig. 8 indicates that the 
intensity profile with the excess contrast for small bn 
begins to bear an asymmetric character with the in- 
crease in be, and that the asymmetric profile as well as 
the contrast reversal of the H.K. lines as experimentally 
observed is due to the change in be. In other words, 
the peculiar features of the H.K. lines may be enhanced 
when the band term, accompanied by an deep negative 
region in the range 0< W_< 1, becomes comparable 
with the line term which is positive throughout. 

Because the dependence of S(Q, Q~) on Q and Qn is 
approximately similar for both the phonon excitation 

Y0 

- i  ...... S (0'2P°) 
OOh ', F(xo, Yo + h) 

r0 

" h /2 
Shadow edge; 

. , '  " ,  . . . .  { .  , .  , ,  , , /  / ,  

' / ! 
I O /  I h/2 

- '! t/ ,x " ooh o, V ol 

D(0,0) /" " Xo 

Qh(=q) 
Fig. 9. Geometry in an RHEED pattern. D, the direct spot; 

S, the specular reflexion, F0 = K~ (e, the glancing angle, K, 
the wave number) is equal to the normal component of ko 
to the crystal surface, x0= K(x/L), x, the distance along the 
Kikuchi line from its central position, L, the camera length. 
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angle ~. Using the approximations ko = Ko and ko = Ko, 
we obtain 

2Folhl 
bB= 1 - 

x~+(Fo+~_) z (13) 

where h is the reciprocal-lattice vector corresponding 
to 00h, x0 = K(x/L), K, the wave number, L, the camera 
length, and F0 = Ke is the normal component of k0 to 
the crystal surface (see Fig. 9). Equation (13) tends to 
unity with the increase in x0. The observed trend, that 
the asymmetric profile of the H.K. line becomes 
noticeable with the increase in Z and finally results in 
the contrast reversal, is now understood as being due 
to the increase of the band term with the increase in Z- 

The form of the transitional boundary or of the q 
boundary defined in {} 4 can also be deduced from (13). 
Let us assume that the transitional region on an H.K. 
line is the place corresponding to b~ = c (0 < c < 1), and 
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(a) q boundary 2r. 
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Fig. 10. Approximate shape of the q boundary assuming c= 

0.5 in equation (14). (a) for Fo=F,, (b) for F0=2F,. D, and 
Db are the direct spots in each case. The q boundary is a 
circle, with the centre at (0,-2F0) and with radius 21/2/'0. 
The coordinate origin is chosen at the direct spot in each 
case, and C, and Cb are the centres of the circles in the cases 
of (a) and (b) respectively. 
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Fig. 11. The variat ion of  bB as a funct ion of Fo for Xo=0. 
bB is almost equal to 0.5 at Fo=31h[. 
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that the coordinate of E in Fig. 9 (DE=q=Qn) is 
given as (x0,Y0). Since 2y0=2Fo-[h i ,  by eliminating [hi 
in (13) we obtain 

X2o+[yo+2CFo/(1-c)]Z=4cFZo/(1-c)2. (14) 

Equation (14) determines the shape of the q boundary, 
which is a circle with the centre at [0, -2eFo/(1-c)] 
and radius 2eFo/(1-c) (Fig. 10). The shape of the 
transitional boundary and its movement with the 
specular spot as described in § 4 are qualitatively in 
agreement with those of this circle. 

Fig. 11 shows the variation of bB as a function of F0 
for x0 =0.  With the increase in F0 (accordingly, in ~.), 
bB decreases first from unity at Fo= 0 to zero at F0 = 
Ih[/2,* and then monotonically increases tending again 
to unity. This variation is also in accordance with the 
trend experimentally observed for the intensity varia- 
tion of the central part of an H.K. line with the change 
of the glancing angle. 

7. Concluding remarks 

The peculiarity of the H.K. lines compared with the 
ordinary Kikuchi lines in the Laue case is a combined 
result of the circumstance that only one tie-point is 
permitted on the dispersion surface in the Brags case, 
and of the absorption effect.t In dealing with inelastic 
processes in a semi-infinite crystal, it is essential to take 
account of absorption (Miyake, Hayakawa & Miida, 
1968); the scattering intensity J0 otherwise diverges 
except for the range of I W[ < 1. Actually, the intensity 
J0 remains finite because of the factor 1//z contained in 
the function S(Q, Qh) etc., as in equation (9). 

In the previous section the character of the H.K. 
lines has been discussed on the basis of (11) as well as 
the form of b8 given by (12), wherein the contribution 
of the background term in equation (6) to the line pro- 
file has been disregarded. It should be noted that this 
term for the Kikuchi pattern in a reflexion photo- 
graph from a semi-infinite absorbing crystal does, in 
contrast with that in a transmission photograph from 
a thin crystal, depend on W through the absorption 
coefficient/z given by (10). The background term in 
equation (6) is, in its magnitude, not always negligible 
compared with the other two terms, especially for the 
range bB,-~ 1. However, since the variation of 1//z with 
W is relatively smaller than that of S(Qh, Qn) and 
S(Q, Q), the main feature of the calculated profiles of 
the H.K. lines and other theoretical conclusions are not 
substantially affected by the neglect of the background 
term. 

It is worth noting that the simple theory presented 

* The present theory is not  valid at the condi t ion F0 = Ih[/2 
for x0 = 0, under  which the specular spot overlaps the H.K.  line 
00h so that the initial state l v/~ +)) is not a single plane wave. 

I" On this occasion, one of the present authors (T.K.) would 
like to make a correction to the previous paper (Kawamura 
et al., 1973), that the interpretation given there of the origin 
of the contrast reversal of the H.K. lines should be replaced 
by the consideration extended in the present paper. 
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above, in which only the single inelastic scattering of 
electrons is taken into account, is successful at least 
qualitatively in explaining the experimental features 
observed for the H.K. lines. This is probably because 
any inelastic process of the electron scattering contribu- 
ting to formation of the H.K. lines can take place only 
at a small depth beneath the crystal surface as a result 
of the small extinction distance in the Bragg case, which 
is estimated to be of the order of ten Angstroms at 
most for lower-order H.K. lines from MgO. 

Other simplifications assumed in the theory, such as 
those due to the two-wave approximation and the 
approximate forms of the structure factors for Kikuchi 
patterns, should be more refined for quantitative dis- 
cussion. In this respect, however, more quantitative 
experimental data should be accumulated. 
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Theoretical expressions for the normalized form of the discrepancy index R2 of Wilson have been 
obtained for crystals containing heavy atoms of similar scattering power, with the heavy-atom part of 
the structure taken as the trial model. The results obtained are applicable for crystals belonging to 72 space 
groups of the triclinic, monoclinic and orthorhombic systems. Expressions for two limiting situations, 
namely complete relatedness and complete unrelatedness, have been tabulated for the commonly 
occurring cases corresponding to the number of heavy atoms in the asymmetric unit being one or two. 
Theoretical curves for this index as a function of the fractional heavy-atom contribution are also given 
for the various cases. 

Introduction 

Wilson (1969) suggested the discrepancy index R2 
(which is the ratio of the sum of the squares of the dif- 
ferences in the observed and calculated intensities over 
the various observed reflexions to the sum of the 
squares of the observed intensities) for use in crystal 
structure analysis, since it is the simplest index to 
manipulate theoretically. He has also considered the 
effect of a badly misplaced atom on this index. 

Parthasarathy & Parthasarathi (1972) (hereafter ab- 
breviated as PP, 1972) have worked out theoretical 
expressions of this index for crystals containing a few 
(i.e. 1 or 2) or many heavy atoms in the unit cell, and 
their final expressions (Table 1 of PP, 1972) are valid 
for triclinic space groups only. Since organic mol- 
ecules crystallize more frequently in monoclinic or 
orthorhombic than in triclinic space groups, it would 
be useful to work out the values of this index* for these 
space groups corresponding to the commonly occur- 

* Contribution No. 380 from the Centre of Advanced Study 
in Physics, University of Madras, Guindy Campus, Madras 
600025, India. 

* The theoretical evaluation of other possible types of dis- 
crepancy indices for space groups of higher symmetry seems 
to be too complicated to be carried out at present. 


